Skip to contents

This function uses an Approximate Bayesian Computation (ABC) algorithm to calculate the extent to which a dataframe can be approximated by a known DGP. It implements simulations across plausible values—rate of change, strength of change, directionality, and reliability—and provides a dataframe with an error score per DGP.

Usage

gridSearch(
  data,
  yname,
  tname,
  pname,
  n_samples = 1000,
  ic_min = 0,
  ic_max = 2,
  pc_min = 0,
  pc_max = 1,
  bal_min = 0,
  bal_max = 1,
  rel_min = 0,
  rel_max = 1,
  fix = "none",
  fix_at = 1,
  verbose = TRUE
)

Arguments

data

A panel dataframe in the long format.

yname

The outcome identifier.

tname

The time identifier.

pname

The unit identifier.

n_samples

The number of samples from priors.

ic_min

Minimum strength of change parameter.

ic_max

Maximum strength of change parameter.

pc_min

Minimum rate of change parameter.

pc_max

Maximum rate of change parameter.

bal_min

Minimum balance parameter.

bal_max

Maximum balance parameter.

rel_min

Minimum reliability parameter.

rel_max

Maximum reliability parameter.

fix

Fix any parameter? (values: "ic_sample," "pc_sample," etc.).

fix_at

At what value to fix it on?

verbose

Whether to see detailed messages.

Value

A data frame.